
Analog Integrated Circuits Design (2024-25)

• MOST Operation, Modelling
– 13-17 Sep MOSFETs: Operation and Modelling
– 20-24 Sep Noise1 : (in time and frequency domains)
– 27 Sep-1 Oct Noise-2 : (Analog circuits noise analysis)

• Voltage references and regulators
– 04 Oct Current Sources and Mirrors
– 08 Oct Voltage and Temperature independent References
– 11 Oct Exercises

• OTA and Op-Amp Design
– 15 Oct OTA Analysis and Design (DC, AC, Stability …) (1)
– 18-22-25 Oct Vacation
– 29 Oct OTA Analysis and Design (DC, AC, Stability …) (2)
– 1 Nov Lab1-a: OTA Structural Design (gm/ID Methodology) theory
– 05 Nov Lab1-b: OTA Structural Design (gm/ID Methodology) Lab (CO5)
– 08 Nov: Multistage OTA (Stability and Frequency Compensation)
– 12 Nov: Fully-Diff Amplifiers & CMFB
– 15 Nov: Variability, offset and noise in OpAmp (1)
– 19 Nov Lab2: Fully diff dolded cascode amplifier & its CMFB (CO5)
– 22 Nov: Variability, offset and noise in OpAmp (2)
– 26 Nov: Rail to Rail input and output amplifiers

• Mixed-signal design
– 29 Nov: Comparators
– 03 Dec Lab3: Comparators (CO5)
– 06-10 Dec: AD and DA converters (introduction)
– 13 Dec: Digital calibration of analog circuits

• 20 Dec General revision (zoom)
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Outline

• Variability and Mismatch in CMOS technology
– Global vs Local Process variations
– Statistical Analysis (Standard deviation)
– Design techniques for better matching 
– Layout techniques for better matching

• DC-offset
– Random offset 
– Systematic offset 
– Impacts on analog and mixed-signal design

• Noise
– Background
– Noise in OTA (simple and advanced topologies)
– Basic methodology for low noise



Process Variation and Mismatch

• Variation in process parameters
– Oxide thickness
– Doping Profile of the channel
– Channel length/width
– Silicon/oxide interface traps and charges 

…

• Variation in electrical parameters
– Threshold voltage mismatch ∆Vth
– Current factor mismatch ∆β

 Impact the performances
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• Studies of amplifiers usually assume the circuits are perfectly symmetric

• In reality nominally-identical devices suffer from a finite mismatch



Global vs Local Process variations

• Global Process variation or Corners: 
– Represent the parameter variations from wafer-to-wafer and lot-to-lot.

– Five corners: (TT/FF/SS/FS/SF): F, S, T means Fast, Slow, Typical

– The first letter refers to nMOS, and the second to pMOS.

– Independent on the design and layout.

– More important in digital design

• Two categories of process variations Global and Local:

• Local Process Variation or Mismatch   
– Represent the parameter variations from device to device on the same circuit.

– Dependent on the design and layout.

– More important in analog design (diff pair, mirrors …)

– Characterized by a statistical model (standard deviation σ).



Local Process Variation and Mismatch LPVM:
Statistical Analysis (Standard deviation) 

• 99.73% of the devices have their P Є [ -3σ , + 3σ]
• Larger components exhibit smaller mismatches
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• A simple mismatch Model for ID and VG (in SI and Sat):
– based on the assumption that VT and β are independent
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– Random offset 
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Objective:

On average, the two devices occupy the
same location on the wafer

 to distribute evenly the influences of
process parameters or temperature
gradients

 to minimize electrical parameters
mismatch e.g. VT and β.

Interdigitated and Common centroid Layout

Layout technics for a better matching

G1,2

D2
D1

S1,2

I 1 = I 2

G1,2

G1to D1 contact



Dif. Pair

More sophisticated Layout

Min CGD: Drain connections are routed in the
side opposite the gate routing, to minimize
parasitic gate-drain (Miller) capacitance.

Guard ring: a ring of contacts encircles the two transistors, providing a low and the same resistance of
the body terminals to the ground or VDD To avoid problems such as latch-up and substrate coupling.

Dummy fingers at the borders  to keep the same
environment for each transistor. Their gates are
connected to ground (resp. to Vdd) to ensure they are
always turned off



Layout rules for better matching
• Combine single-sized units to draw transistors (same L

same W)
• Keep the layout of the matched transistors as compact as

possible
• Orient transistors in the same direction (keep current

propagation symmetrical)
• Use interdigitated fingers and common-centroid layout

• Add dummy fingers (in the borders)

• Add a ring of contacts (guard ring) encircling the
transistors.

• Use several contacts to connect two different layers in order
to reduce interlayer resistance (via are quite resistive)

• Do not place contacts on top of active gate areas (Whenever
possible, extend the poly beyond the diffusion and place the
gate contacts over thick field oxide.

• Connect gate fingers using metal straps (avoid poly
connections. Poly is a bad conductor).

• Do not route metal across the active gate area.
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Random DC-offset: (diff. pair)
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OTA – Random Offset Voltage(Voff)

min Offset Maximize gm,dif /ID and minimize gm,mir /ID 

 gm,dif >> gm,mir

i.e. Diff pair in weak inversion and Active load in strong inversion

min Offset Maximize gm,dif /ID and minimize gm,mir /ID 

 gm,dif >> gm,mir

i.e. Diff pair in weak inversion and Active load in strong inversion
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Systematic or Electrical DC-offset:
(Ex. Miller Amp)
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• Offset due to asymmetries in the circuits.
• For instance, here, M3 is diode-connected but not M4.
• In addition VSD4 is set by M6 (VSD4 =VGS6)
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Systematic DC-offset: Design solution

• Condition for a low systematic offset :
• ID3 ≈ ID4 ≈  I/2
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• M4, M3 and M6 are carefully matched

• Residual systematic offset at the input :

Vos,sys =  (VD3 - VD4 )/Av1 

With Av1 = gm1 /(gDS1 +gDS4)

 VSD4 ≈ VSD3 ≈ VSG3

Since VSD4 = VSG6 

 we should have VSG6 ≈ VSG3



Offset in Comparators

• Several Offset cancellation Technics exist: 
• It is worth noting that these technics usually also reduce LF noise and drift 

Model of real OTA

• Nominally-identical devices of OTA suffer from a finite mismatch
 represented by an input-referred DC  offset voltage

∆V Vo

Vo

±3σ(vio) = lower bound 
on ∆V that can be 
detected reliably 

For comparators



Lack of accuracy in CMOS comparators:
Consequences in ADC Performance 

Y
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σ(vio) of the comparators [mV]

Theoretical Yield on monotonicity (i.e. The probability that the comparators
switch in the correct order), here for a signal swing is 2 V

σ<0.5mV σ<3mV

Ref: Yield of n-bit flash ADC Ref. P. Pelgrom & al IEDM 1998
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Background 1
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Background 2

Cascode

Diff Amp
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Noise in Telescopic Amp.
• Give the main noise contributors
• Determine the input-referred noise 𝒗𝒏,𝒊

𝟐

• Propose IF (or Vov) of the transistors to optimize the noise
• Discuss the resulted tradeoffs (noise vs offset, dynamic range and

consumption)
• Prose a solution to optimize flicker noise
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Noise in Folded cascode amp.
• Give the main noise contributors and compare with

Telescopic
• Determine the input-referred noise 𝒗𝒏,𝒊

𝟐

• Propose IF (or Vov) of the transistors to optimize the noise
• Discuss the resulted tradeoffs (noise vs offset, dynamic

range and consumption)
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Noise in Miler amp.
• Give the main noise contributors
• Determine the input-referred noise 𝒗𝒏,𝒊

𝟐

• Propose IF (or Vov) of the transistors to optimize the
noise

• Comment on Vov of TL

• Compare with the other topologies
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